

Session 3: Random coefficient models

Outline

- Random coefficient models
 - Allowing individual-level relationships to vary across groups
 - Linking individual and group level explanations cross level interactions

Random intercept model of weight on height

- Previously we allowed average family height to be different in each family
- But assumed relationship with weight constant
- What if a unit increase in weight leads to **different** increases in height

Random coefficient model of weight on height

- β_1 is average relationship between weight and height
- Slope of group j is $\beta_1 + u_{1j}$

Random coefficient model of weight on height

- Deviations from average intercept and coefficient assumed bivariate normal with variances $\sigma_{u0}^2 \sigma_{u1}^2$
- AND we also have information on how the residuals covary σ_{u01}

Example: Fear of Crime across neighbourhoods

RANDOM COEFFICIENT MODEL	Crime Survey for England and Wales, 2013/14				
	MODEL 1	MODEL 2	MODEL 3		
FIXED PART					
Intercept	0.027 (.009)	007 (.009)	007 (.009)		
X_{1ii} Age (in years)		004 (.001)	004 (.001)		
x_{2ij}^{-5} Victim in last 12 months		.262 (.014)	<u>.264 (.015)</u>		
x_{3j} Crime Rate		.233 (.012)	.233 (.012)		
σ_{e}^{2} Individual variance	0.863 (.008)	.855 (.008)	.853 (.008)		
S_{u0}^2 Neighbourhood variance	0.145 (.007)	.104 (.006)	.097 (.007)		
S_{u2}^2 Victim variance			.048 (.014)		
S_{u02} Covariance			022 (.008)		

- Neighbourhood variance = how levels of fear vary across neighbourhoods for non-victims (e.g. when victim=0).
- Victim variance quantifies variation across neighbourhoods in the effect of being a victim

Graphical representation of random coefficient and covariance term

Cross level interactions

- Allow the effect of an explanatory variable on y to depends on the value of another (grouping) variable
- Do people experience context differently?
 - Place individuals directly within their context

$$y_{ij} = \beta_0 + \beta_1 x_{ij} + \beta_2 x_j + \beta_3 x_{1ij} x_{2j} + u_j + u_{1j} x_{ij} + e_{ij}$$

Often included when individual level variables has a random coefficient

Example: Fear of Crime across neighbourhoods

CROSS LEVEL INTERACTION MODEL

Crime Survey for England and Wales, 2013/14

	MODEL 1	MODEL 2	MODEL 3	MODEL 4
FIXED PART				
Intercept	0.027 (.009)	007 (.009)	007 (.009)	011 (.009)
X_{1ii} Age (in years)		004 (.001)	004 (.001)	004 (.001)
x_{2ij} Victim in last 12 months		.262 (.014)	<u>.264 (.015)</u>	<u>.268 (.015)</u>
x_{3i} Crime Rate		.233 (.012)	.233 (.012)	.217 (.013)
$x_{2ij} * x_{3j}$ Victim * Crime Rate				067 (.021)
RANDOM PART				
$\sigma^{_{\scriptscriptstyle E}}_{e}$ Individual variance	0.863 (.008)	.855 (.008)	.853 (.008)	.853 (.008)
S_{u0}^2 Neighbourhood variance	0.145 (.007)	.104 (.006)	.097 (.007)	.097 (.007)
S_{u2}^2 Victim variance			.048 (.014)	.046 (.014)
S _{u02} Covariance			022 (.008)	020 (.008)

- Non-victim: Fear = -.011 + .217 Crime Rate
- Victim: Fear = (-.011+.268) + (.217-.067) Crime rate Fear = .257 + .150 Crime Rate

Summary

- Random coefficient models can be used to more accurately account for differential associations between x and y across groups
- Cross-level interactions connect individual and group level explanations
- Extends readily to multiple random effects and additional levels
- Models also available for non-normal data (e.g. binary, categorical, ordered categories, poisson)

For more information visit www.ncrm.ac.uk

